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Let A ⊆ B be a ring extension and G be a set of A-submodules of B. We introduce a 
class of closure operations on G (which we call multiplicative operations on (A, B, G)) 
that generalizes the classes of star, semistar and semiprime operations. We study 
how the set Mult(A, B, G) of these closure operations varies when A, B or G vary, 
and how Mult(A, B, G) behaves under ring homomorphisms. As an application, we 
show how to reduce the study of star operations on analytically unramified one-
dimensional Noetherian domains to the study of closures on finite extensions of 
Artinian rings.
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1. Introduction

Let (P, ≤) be a partially ordered set. A closure operation on (P, ≤) is a map c : P −→ P that is extensive 
(x ≤ c(x) for all x), order-preserving (if x ≤ y, then c(x) ≤ c(y)) and idempotent (c(c(x)) = c(x) for all x). 
In commutative algebra, there are several classes of closure operations in use, where the set P is usually a 
set of ideals of a ring R or a set of submodules of a given R-module; to be connected with the algebraic 
properties of the ring (or the module), the definition of such classes usually includes a multiplicative property 
relating the product x · c(I) with the closure c(xI), where x varies among the elements of the ring and I
among the set of ideals or submodules considered. The three main classes of closure operations are semiprime 
operations, star operations and semistar operations (see Section 2 for the definitions).

These three classes are defined very similarly, and it is natural to think that they are somewhat interre-
lated. Indeed, star and semistar operations are often introduced and studied together (and the latter were 
actually born as a generalization of the former [16]); on the other hand, restricting a semistar operation we 
get a semiprime operation, and this correspondence can partly be inverted [5]. However, the study of these 
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classes is usually pursued in different contexts: star and semistar operations are defined only in the integral 
domain setting (although they can be generalized: see [3]), and their study is often connected with Prüfer 
domains and their generalizations, while semiprime operations can be defined for arbitrary rings, and are 
studied especially in the Noetherian context. In particular, a major point of difference is that the most useful 
semiprime operations have some functorial properties, while star and semistar operations usually behave 
very badly under quotients, with only some sparse exception [7].

In this paper, we define and study multiplicative operations, a class of closure operations that encom-
passes these three classes of closures, allowing to study them in a unified way. Following the concept of 
star operation on an extension introduced by Knebush and Kaiser [15, Chapter 3, Section 3], our setting 
will always be a ring extension A ⊆ B, with no hypothesis on A and B, and our partially ordered set 
will be a subset G of the set FA(B) of A-submodules of B which is, in principle, arbitrary (but we will 
need some hypothesis to get good properties). The main advantage of our definition is the possibility of 
varying B and G: for example, with B = A and G = FA(A) (i.e., G is the set of all ideals) multiplicative 
operations reduce to semiprime operations, while if A is a domain, B its quotient field and G = FA(B)
we obtain the semistar operations. In Sections 4 and 5, we show how the choice of B and G influences 
the set Mult(A, B, G) of the multiplicative operations on (A, B, G), and how the flexibility of the definition 
allows to prove functorial properties. We also show how this point of view allows to generalize the study 
of semiprime operations of discrete valuation domains done in [22] to arbitrary one-dimensional valuation 
domains (Example 4.12).

In Sections 6 and 7, we specialize to the case where B is a principal ideal domain: in particular, we show 
how in this context it is possible to relate the multiplicative operations on (A, B, G) with the multiplicative 
operations on a quotient (A/I, B/I, G′), where I is a common ideal of A and B and G′ depends on G. When 
A is a one-dimensional Noetherian domain with finite normalization, we show how the set of star operations 
on A can be interpreted as the set of multiplicative operations on a proper quotient of A; in particular, if 
B is the normalization of A and we fix the length �A(B/A), we only get finitely many possibilities for the 
set of star operations, giving a “high-level” explanation of some results of [12]. This line of investigation, 
together with explicit bounds on the number of star operations, will be pursued in a forthcoming paper 
[20].

2. Notation and background

Throughout the paper, all rings will be commutative and unitary.
Given a ring A, we denote by I(A) the set of ideals of A; if M is an A-module, we denote by FA(M) the 

set of A-submodules of M . If D is an integral domain, a fractional ideal of D is a D-submodule I of the 
quotient field of D such that dI ⊆ D for some d ∈ D \ {0}; we denote by F(D) the set of fractional ideals 
of D. If G ⊆ FA(M), we set G• := G \ {(0)}.

Definition 2.1. Let (P, ≤) be a partially ordered set. A closure operation on (P, ≤) is a map c : P −→ P
such that, for every x, y ∈ P:

• x ≤ c(x);
• x ≤ y implies c(x) ≤ c(y);
• c(c(x)) = c(x).

We denote by Clos(P) the set of closure operations on P. This set is endowed with a natural partial 
order, where c1 ≤ c2 if and only if c1(x) ≤ c2(x) for every x ∈ P, or equivalently if and only if x = c2(x)
implies that x = c1(x).
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When P is a subset of FA(M) (for some A and M) we consider it a partially ordered set under the 
containment order; furthermore, we write the image of I ∈ FA(M) under the closure operation c by Ic.

The most common classes of closure operations in commutative algebra are semiprime, star and semistar 
operations.

• A semiprime operation on A is a closure operation c on I(A) such that x · Ic ⊆ (xI)c for every I ∈ I(A)
and every x ∈ A [17].

• A fractional star operation on an integral domain D is a closure operation � on F(D) such that x · I� =
(xI)� for every I ∈ F(D) and every x in the quotient field of D [21]. We denote the set of fractional 
star operations by FStar(D).

• A star operation on an integral domain D is a fractional star operation � on F(D) such that D = D�. 
We denote the set of star operations by Star(D).

• A semistar operation on an integral domain D is a closure operation � on FD(K) (where K is the 
quotient field of D) such that x · I� = (xI)� for every I ∈ FD(K) and every x ∈ K. We denote the set 
of semistar operations by SStar(D).

For the standard results on the theory of star and semistar operations, the reader may consult [8, Chapter 
32], [16] or [3].

We will also need the following terminology.

Definition 2.2. Let (P, ≤) be a partially ordered set and let G ⊆ P. We say that G is:

• downward closed in P (or a downset) if, when x ∈ G and y ≤ x, then y ∈ G;
• upward closed in P (or an upset) if, when x ∈ G and x ≤ y, then y ∈ G;
• an interval in P if, when x ≤ y are in G and x ≤ z ≤ y, then also z ∈ G;
• quasi-downward closed in P if G is an interval with a minimum;
• quasi-upward closed in P if G is an interval with a maximum.

When G is a set of A-submodules of B, we shall silently consider P = FA(B), and drop the “in P”.

3. Multiplicative operations

Definition 3.1. Let A ⊆ B be a ring extension, and let G ⊆ FA(B). A multiplicative operation on (A, B, G)
is a closure operation � : G −→ G, I �→ I� such that

(†) (I : b)� ⊆ (I� : b) for all I ∈ G, b ∈ B such that (I : b) ∈ G.

We say that I ∈ G is �-closed if I = I�, and we denote by G� the set of �-closed elements of G. We denote 
by Mult(A, B, G) the set of those maps.

Condition (†) is somewhat different from the properties used to define semiprime or semistar operations, 
since it involves the conductor instead of the product of ideals. However, (†) is more useful in contexts where 
G is upward closed, since in this case conductors are in G more often than products. In the basic cases, this 
condition reduces to a more usual definition, as we show next.

Lemma 3.2. Let G ⊆ FA(B) and suppose that, for every I, J ∈ G, b ∈ B with J �= (0) and b �= 0, we have 
(I : J), (I : b), IJ, bI ∈ G. Let � : G −→ G be a closure operation. The following are equivalent:
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(i) bI� ⊆ (bI)� for all I ∈ FA(B) and all b ∈ B;
(ii) JI� ⊆ (JI)� for all I, J ∈ FA(B);
(iii) (I : b)� ⊆ (I� : b) for all I ∈ FA(B) and all b ∈ B.

Proof. The equivalence of (i) and (ii) is proved in [15, Chapter 3, Lemma 3.1]. Suppose (i) holds: then, 
using it on (I� : b), we have

b(I� : b)� ⊆ (b(I� : b))� ⊆ (I�)� = I�,

and so (iii) holds. Conversely, if (iii) holds then

I� ⊆ (bI : b)� ⊆ ((bI)� : b)

and so bI� ⊆ (bI)�, i.e., (i) holds. The claim is proved. �
The hypothesis of the lemma hold, for example, if G = FA(B) or if A is a domain, B its quotient field 

and G the set of fractional ideals of A.

Example 3.3. Definition 3.1 is very general, and includes several already studied classes of closure operations.

(1) If G = FA(B), then the notion of multiplicative operation on (A, B, G) coincides with the notion of star 
operation on the extension A ⊆ B, as defined in [15, Chapter 3].

(2) If A is a domain and B is its quotient field, then a multiplicative operation on (A, B, FA(B)•) is just 
a semistar operation on A. On the other hand, the multiplicative operations on (A, B, FA(B)) are the 
semistar operations and the closure sending every submodule to B.

(3) If A = B, then FA(A) = I(A) is just the set of ideals of A. By Lemma 3.2, the multiplicative operations 
on (A, A, I(A)) are exactly the semiprime operations on A.

(4) If A is a domain and B is its quotient field, then a multiplicative operation on (A, B, F(A)•) is ex-
actly a fractional star operation on A. To obtain star operations, we need to consider only integral 
ideals; while the proof is easy, it needs some care, and for this reason we give it explicitly in the next 
proposition.

Proposition 3.4. Let D be an integral domain and let K be its quotient field. Then, the map

Ψ: Star(D) −→ Mult(D,K, I(D)•),

� �−→ �|I(D)•

is an order isomorphism.

Proof. The restriction of a star operation is clearly multiplicative, and thus Ψ is well-defined and order-
preserving. Furthermore, if �1 �= �2 then I�1 �= I�2 for some fractional ideal I; if d �= 0 satisfies dI ⊆ D, 
then (dI)�1 = dI�1 �= dI�2 = (dI)�2 , and thus Ψ is also injective.

Suppose now that ∗ ∈ Mult(D, K, I(D)•). For every fractional ideal I of D, let d �= 0 be such that 
dI ⊆ D, and define I� := d−1(dI)∗. We claim that � is a star operation whose restriction is ∗.

We first show that � is well-defined: indeed, suppose dI, eI ⊆ D for some d, e �= 0. Then, (dI : e−1d) =
eI ⊆ D, and thus

(eI)∗ = (dI : e−1d)∗ ⊆ ((dI)∗ : e−1d) = ed−1(dI)∗



D. Spirito / Journal of Pure and Applied Algebra 225 (2021) 106555 5
and so e−1(eI)∗ ⊆ d−1(dI)∗. By symmetry, also the opposite containment holds, and thus ∗ is well-defined. 
The definition immediately implies that � is extensive; it is also order-preserving since if I ⊆ J and dJ ⊆ D

then also dI ⊆ D. It is idempotent since, if dI ⊆ D, then dI� = d(d−1(dI)∗) = (dI)∗ and so

(I�)� = d−1(dI)∗ = d−1dI� = I�.

Similarly, for every e ∈ K, if dI ⊆ D then e−1deI ⊆ D and thus

(eI)� = ed−1(e−1deI)∗ = e(d−1(dI)∗)) = eI�.

Finally, using d = 1 (and the fact that D is the maximum of I(D)•) we see that D� = D and I� = I∗ for 
every I ∈ I(D)•; therefore, ∗ = Ψ(�) and Ψ is surjective. Hence, it is an order isomorphism, as claimed. �

Like in the case of semistar operations, using I(D) instead of I(D)• we obtain a single new multiplicative 
operation, namely the one sending every ideal to A.

Remark 3.5.

(1) As an A-algebra, B is also an A-module. There are several kinds of closure operations that can be 
defined on the submodules of an A-module (see e.g. [4, Section 7]); however, the notion of multiplicative 
operation cannot be reduced to any of them, since multiplication by elements of B is an integral part 
of Definition 3.1. For example, if A is a field and G = FA(B), the set of multiplicative operations on 
(A, B, G) depends not only on the A-module structure of B (i.e., on the dimension of B over A) but 
also on its ring structure.

(2) Even if all elements of G are contained in a subalgebra B′ ⊆ B, the multiplicative operations on 
(A, B, G) are not the same as the multiplicative operations on (A, B′, G). For example, if A is a domain 
and G are the ideals of A, the multiplicative operations on (A, A, G) are the semiprime operations, 
while the multiplicative operations on (A, K, G) (where K is the quotient field of A) correspond, by 
Proposition 3.4, to star operations (plus the trivial map I �→ A).

While multiplicative operations usually act very similarly to semistar, star or semiprime operations, often 
additional care is needed in describing their properties, since the set G of definition may not be closed by 
sums or by intersections. We usually circumvent this problem by adding some hypothesis on G.

Proposition 3.6. Let � be a multiplicative operation on (A, B, G), and let I ∈ G, {Iλ}λ∈Λ ⊆ G. Then, the 
following hold.

(a) If 
∑

λ Iλ, 
∑

λ I
�
λ ∈ G, then (

∑
λ Iλ)� = (

∑
λ I

�
λ)�. In particular, this happens if G is quasi-upward closed.

(b) If 
⋂

λ Iλ, 
⋂

λ I
�
λ ∈ G, then (

⋂
λ Iλ)� = (

⋂
λ I

�
λ)�. In particular, this happens if G is quasi-downward closed.

(c) If I is �-closed and (I : b) ∈ G, then (I : b) is �-closed.
(d) I� is equal to the intersection of all the �-closed modules containing I.

Proof. It is enough to apply the definitions. �
Point (d) of the previous proposition has a significant consequence.

Corollary 3.7. Let �1, �2 ∈ Mult(A, B, G). If G�1 = G�2 , then �1 = �2.

Proof. By Proposition 3.6(d), for every I ∈ G the closure I� can be defined uniquely through G�. Hence, if 
�1 and �2 close exactly the same modules then they must be equal. �
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Two common properties of closure operations in the algebraic setting are being of finite type and being 
stable. These definitions and the related constructions work only partially for multiplicative operations.

Proposition 3.8. Let A ⊆ B be a ring extension and let G ⊆ FA(B) be downward closed; let � ∈
Mult(A, B, G). The map

�f : I �→
⋃

{J� | J ⊆ I is finitely generated}

is a well-defined multiplicative operation on (A, B, G), and �f = (�f )f .

We say that � is of finite type if � = �f .

Proof. Since G is downward closed, J� is defined for every finitely generated A-module J ⊆ I; furthermore, 
the union is in G because it is contained in I�. Hence, �f is well-defined as a map from G to G. The fact 
that �f is a closure operation follows exactly as in the star or in the semiprime case.

Let I ∈ G and b ∈ B. Suppose x ∈ (I : b)�f : then, there is a finitely generated J ⊆ (I : b) such that 
x ∈ J�. Hence,

x ∈ J� ⊆ (bJ : b)� ⊆ ((bJ)� : b) ⊆ (I�f : b)

since bJ ⊆ I is finitely generated and thus (bJ)� = (bJ)�f ⊆ I�f . Hence, �f is multiplicative; the fact that 
�f = (�f )f follows again as in the star or in the semiprime setting. �

We say that a multiplicative operation � on (A, B, G) is stable if (I ∩ J)� = I� ∩ J� for every I, J ∈ G.

Proposition 3.9. Let A ⊆ B be a ring extension and let G ⊆ FA(B) be downward closed; suppose A ∈ G.

(a) The map

� : I �→
⋃

{(I : E) | E� = A�}

is a well-defined stable multiplicative operation on (A, B, G). Furthermore, (�) = �, and � is stable if 
and only if � = �.

(b) The map

�w : I �→
⋃

{(I : E) | E� = A�, E is finitely generated}

is a well-defined stable multiplicative operation of finite type on (A, B, G). Furthermore, �w = (�w)w.

Proof. Since A ∈ G, it makes sense to consider the modules E such that E� = A�. If x ∈ (I : E) and 
E� = A�, then E ⊆ (I : x) and thus

1 ∈ A� = E� ⊆ (I : x)� ⊆ (I� : x),

so x ∈ I�, i.e., (I : E) ⊆ I�. Hence, I� ⊆ I� and since G is downward closed I� ∈ G. The fact that � is a 
closure operation follows as in the star operation setting (see e.g. [1]).

Let I ∈ G and b ∈ B. If x ∈ (I : b)�, then there is an E such that E� = A� and such that x ∈ ((I : b) : E). 
Thus, xbE ⊆ I and xb ∈ (I : E) ⊆ I�. Hence, x ∈ (I� : b) and (I : b)� ⊆ (I� : b), i.e., � is multiplicative.

All the other claims follow as in the star operation setting (see again [1]). The case for �w is completely 
analogous (adding “finitely generated” when needed). �
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The set Mult(A, B, G) inherits from Clos(G) a natural order structure. Unlike Star(D) or SStar(D), in 
general this order does not satisfy any significant property: for example, it needs not to admit infima or 
suprema, even of finite subsets. Adding hypothesis on G helps.

Proposition 3.10. Let A ⊆ B be a ring extension and let G ⊆ FA(B) be an interval. Let Λ ⊆ Mult(A, B, G)
be nonempty. Then, the following hold.

(a) Λ has an infimum inf Λ, and

I inf Λ =
⋂
�∈Λ

I�

for every I ∈ G.
(b) Suppose that every L ∈ G is contained in a submodule that is �-closed for every � ∈ Λ. Then, Λ has a 

supremum sup Λ, and

Isup Λ =
⋂

{J ∈ G | I ⊆ J = J� for all � ∈ Λ}

for every I ∈ G. In particular, if G is quasi-upward closed then supΛ exists for every Λ ⊆ Mult(A, B, G).

Proof. (a) Let � be the map sending I to 
⋂

�∈Λ I�. If � ∈ Λ is arbitrary, then since G is an interval every 
element between I and I� is in G; this applies in particular to the intersection 

⋂
�∈Λ I�, so that � is actually 

a map from G to itself.
Clearly, � is a closure operation, and it is the infimum of Λ in the set of all closures. Suppose I, (I : b) ∈ G. 

Then,

(I : b)� =
⋂
�∈Λ

(I : b)� ⊆
(⋂

�∈Λ

I� : b
)

= (I� : b)

and thus � is multiplicative. Hence, it is the infimum of Λ in Mult(A, B, G).
(b) Let I� be the intersection on the right hand side; the hypothesis guarantees that there is always some 

J = J� containing I, and thus I� is well-defined. Since G is an interval and I ⊆ I�, we see that I� ∈ G; 
hence, the map � : I �→ I� is a self-map of G. It is also easy to see that � is a closure operation and that it 
is the supremum of Λ in Clos(A, B, G).

Suppose I, (I : b) ∈ G. The module I� is �-closed for every � ∈ Λ and, since each � is multiplicative, also 
(I� : b) is �-closed; it follows that (I : b)� ⊆ (I� : b), so that � is multiplicative.

The last remark follows, since the maximum of G is closed by every multiplicative operation. �
Remark 3.11.

(1) Part (b) can be applied, in particular, if B ∈ G; hence, it holds in the set of semiprime or semistar 
operations.

(2) Let A be a domain and B its quotient field. If G is the set of nonzero fractional ideals and Λ is the 
set of star operations on A, then part (b) can be applied, since every fractional ideal J is contained in 
some principal ideal bA and (bA)� = bA� = bA for every b ∈ B. This can also be seen by viewing star 
operations as the multiplicative operations on (A, B, I(A)•) (through Proposition 3.4) since I(A)• has 
a maximum (A itself).

(3) Let A, B, G be as in the previous case, and suppose that the set T of overrings of A that are fractional 
ideals of A has no maximum (or, equivalently, no maximal element). Associate to each T ∈ T the 
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multiplicative operation ∧T : I �→ IT : then, the set {∧T | T ∈ T } has no supremum in Mult(A, B, G). 
This happens, for example, if A is a valuation domain without an height-one prime (as all localizations 
of A different from the quotient field B are fractional ideals) or if A is a one-dimensional Noetherian 
domain whose integral closure is not finite over A.

Let A ⊆ B be a ring extension, and let B1, B2 be two rings between A and B. Let G ⊆ FA(B1) ∩FA(B2)
be an interval. While multiplicative operations on (A, B1, G) and (A, B2, G) do not necessarily coincide 
(see Example 3.3, points (3) and (4)), we can consider both Mult(A, B1, G) and Mult(A, B2, G) as subsets 
of Clos(G), the set of closures on G, so in particular it makes sense to consider their intersection. The 
constructions in Proposition 3.10 imply the following.

Proposition 3.12. Let A, B, B1, B2, G be as above, and suppose that G is an interval. Let Λ ⊆ Mult(A, B1, G) ∩
Mult(A, B2, G). Then, the following hold.

(a) The infimum of Λ inside Mult(A, B1, G) coincides with the infimum of Λ in Clos(G) and in 
Mult(A, B2, G).

(b) Suppose Λ satisfies the hypothesis of Proposition 3.10(b). Then, the supremum of Λ inside Mult(A, B1, G)
coincides with the supremum of Λ in Clos(G) and in Mult(A, B2, G).

We shall study in a deeper way the relationship between Mult(A, B1, G) and Mult(A, B2, G) in Section 5.

4. Changing G and principal operations

In this section, we want to analyze how the set of multiplicative operations changes by going from G1 to 
G2 (and conversely), where G1 ⊆ G2 are two subsets of FA(B) (with A and B remaining fixed). The passage 
from G2 to G1 can be obtained by restriction.

Proposition 4.1. Let A ⊆ B be a ring extension, and let G1 ⊆ G2 be two subsets of FA(B).

(a) If � ∈ Mult(A, B, G2) restricts to a map �′ : G1 −→ G1, then �′ ∈ Mult(A, B, G1).
(b) If G1 is an interval and G1 and G2 have a common maximum, then every multiplicative operation on 

(A, B, G2) can be restricted to G1, and the map

ρ : Mult(A,B,G2) −→ Mult(A,B,G1)

� �−→ �|G1

is well-defined and order-preserving.

Proof. Part (a) is obvious. For part (b), let T be the maximum of G1 and G2. Then, T � = T for every 
� ∈ Mult(A, B, G2), and thus I� ⊆ T for every I ∈ G1. Since G1 is an interval, it follows that I� ∈ G1 for 
every I ∈ G1, and thus � restricts to a multiplicative operation on G1. Hence, ρ is well-defined; the fact that 
it is order-preserving follows immediately from the definitions. �

To study extensions from G1 to G2, we need a way to build closures: we do so by attaching to each element 
of G a multiplicative operation. We shall give the definition in the quasi-upward closed case, and prove the 
extension property in the upward closed case; the latter condition, in particular, does not cover all important 
cases (in particular, it misses star operations), but will be enough for the applications in Section 7.
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Definition 4.2. Suppose G is quasi-upward closed, and let J ∈ G. The multiplicative operation generated by 
J on (A, B, G) is the closure

∗J := sup{� ∈ Mult(A,B,G) | J = J�}.

Likewise, if S ⊆ G, the multiplicative operation generated by S is

∗S := sup{� ∈ Mult(A,B,G) | J = J� for all J ∈ S} = inf{∗J | J ∈ S}

If � = ∗J for some J ∈ G, we say that � is a principal multiplicative operation.

Note that the supremum is well-defined since G has a maximum, and so the supremum exist (and belongs 
to Mult(A, B, G)) by Proposition 3.10(b).

Lemma 4.3. Suppose G is quasi-upward closed. Then, � = ∗G� for every � ∈ Mult(A, B, G).

Proof. Let S := G�. If I ∈ S, then ∗I ≥ �, and thus ∗S ≥ �. In particular, G∗S ⊆ G� = S. Furthermore, I is 
closed by ∗S , and thus G� = S ⊆ G∗S . Hence, S = G∗S and thus � = ∗S by Corollary 3.7. �

If G is upward closed, we can give a more explicit description of ∗J by means of a “double dual” con-
struction.

Lemma 4.4. Suppose that G is upward closed in FA(B). Then, I∗J = (J :B (J :B I)) for all I ∈ G.

Proof. For simplicity of notation, we use (I : J) for (I :B J).
We first show that

(J : (J : I)) =
⋂

{(J : b) | I ⊆ (J : b)}.

Indeed, if x ∈ (J : (J : I)) then x(J : I) ⊆ J . If I ⊆ (J : b), then b ∈ (J : I), and thus xb ∈ J ; 
hence, x ∈ (J : b) and thus x is in the intersection. Conversely, if x is in the intersection and s ∈ (J : I), 
then I ⊆ (J : s) and thus x ∈ (J : s), i.e., xs ∈ J ; since s was arbitrary, x(J : I) ⊆ J , or equivalently 
x ∈ (J : (J : I)).

Hence, the map � sending I to (J : (J : I)) is a closure. With a reasoning analogous to the one in [15, 
Chapter 3, Proposition 3.6] or [10, Proposition 3.2], we see that it satisfies b ·I� ⊆ (bI)� for every I ∈ FA(B)
and every b, and thus it is multiplicative on (A, B, FA(B)) by Lemma 3.2; hence, it is also multiplicative 
on (A, B, G). Since J� = (J : (J : J)) = J , we have ∗J ≤ �; conversely, since J is ∗J -closed then also each 
(J : b) is ∗J -closed, and so also (J : (J : I)) is ∗J -closed, being the intersection of ∗J -closed modules. Hence, 
I∗J ⊆ (J : (J : I)) and so ∗J ≤ �. Therefore, ∗J = �, as claimed. �

As defined, the multiplicative operation ∗J is relative to the triple (A, B, G). However, Lemma 4.4 shows 
that it is essentially independent from G.

Corollary 4.5. Let G1 ⊆ G2 be upward closed subsets, and let J ∈ G1; for i ∈ {1, 2}, let �i be the principal 
operation generated by J on (A, B, Gi). Then, �2|G1 = �1.

Proof. By Lemma 4.4, for every I ∈ G1 we have I�2 = (J :B (J :B I)) = I�1 . The claim is proved. �
Lemma 4.4 does not hold if G is only quasi-upward closed. For example, let A be an integral domain, B

its quotient field and G := I(A). If J ∈ G satisfies (J : J) �= A, then the map I �→ (J : (J : I)) sends A to 
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(J : J) /∈ G, and thus it is not equal to the principal operation generated by J . Furthermore, if G′ := F(A), 
then with the same notation the multiplicative operation generated by J on (A, B, G) will be different from 
the multiplicative operation generated by J on (A, B, G′).

Proposition 4.6. Let A ⊆ B be a ring extension, and let G1 ⊆ G2 be two upward closed subsets of FA(B). 
Then, the following hold.

(a) For every � ∈ Mult(A, B, G1), the map

�̂ : G2 −→ G2

I �−→
⋂

J∈G1
J=J�

(J :B (J :B I))

is a multiplicative operation on (A, B, G2).
(b) The map

η : Mult(A,B,G1) −→ Mult(A,B,G2)

� �−→ �̂

is well-defined and order-preserving.
(c) If ρ is the map defined in Proposition 4.1, then ρ ◦ η is the identity on Mult(A, B, G1), i.e., �̂|G1 = �. 

In particular, η is injective and ρ is surjective.

Proof. By Lemma 4.4 and Corollary 4.5, �̂ is just the multiplicative operation generated by G�
1 := {J ∈ G1 |

J = J�} on G2, so that η : � �−→ �̂ is well-defined; the fact that η is order-preserving is obvious.
Furthermore, by Lemma 4.3, � can be seen as the multiplicative operation generated by G�

1 in G1: hence, 
if I ∈ G1 then I� =

⋂
{(J : (J : I)) | J ∈ G�

1}, and in particular I� = I �̂. Thus �̂ restricts to � and ρ ◦ η is 
the identity. �

In general, the extension of a multiplicative operation � on (A, B, G) is not unique, either for trivial (for 
example, if G1 = {B}) or nontrivial reason (see Example 4.11 below).

We now use principal operations to introduce an order on G.

Definition 4.7. Let A ⊆ B be a ring extension, and let G ⊆ FA(B) be quasi-upward closed. Let I, J ∈ G. We 
say that I is multiplicatively minor than J on (A, B, G) if ∗I ≥ ∗J (where ∗I denotes the principal operation 
generated by I on (A, B, G)), or equivalently if J is ∗I -closed. In this case, we write I 
(A,B,G) J , or I 
 J

if the triple (A, B, G) is understood from the context. We call 
 the multiplicative order of G with respect 
to A ⊆ B.

Note that, like the operation generated by a module, the relation 
 is relative to the triple (A, B, G). 
Corollary 4.5 can be naturally reparaphrased using 
.

Proposition 4.8. Let G1 ⊆ G2 be upward closed, and let I, J ∈ G1. Then, I 
(A,B,G1) J if and only if 
I 
(A,B,G2) J .

Proof. Both conditions are equivalent to J = (I :B (I :B J)). �
The relation 
=
(A,B,G) is easily seen to be reflexive and transitive, and thus a preorder. In general, it is 

not an order: for example, if A is a domain, B its quotient field and G = FA(B), then I 
 bI and bI 
 I for 
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every nonzero b ∈ B. We denote by [G] the set of equivalence classes of G through the equivalence relation 
induced by 
 on G (i.e., such that I and J are equivalent if and only if I 
 J and J 
 I), and by [I] the 
class of I ∈ G. For ease of notation, we continue to use 
 to denote the order induced on [G] by the preorder 
on G.

Proposition 4.9. Let G be quasi-upward closed. Then, the following hold.

(a) If T is the maximum of G, then [T ] is the minimum of ([G], 
).
(b) The set G� is downward closed in (G, 
).
(c) For every J ∈ G, the set G∗J is the down-set of J in (G, 
).
(d) If ([G], 
) has a maximum [ω], then ∗ω is the identity.

Proof. (a) follows from the fact that T is �-closed for every � ∈ Mult(A, B, G) (as T ⊆ T �). (b) and (c) 
follow directly from the definitions, while (d) is a direct consequence of (c). �

Note that ([G], 
) may not have a maximum, or even maximal elements. If [ω] is a maximum of ([G], 
), 
we say that ω is a canonical ideal for (A, B, G).

Since G� is downward closed, if we want to describe all multiplicative operations on (A, B, G) we just 
have to find which downsets are in the form G�. The following is a useful criterion.

Proposition 4.10. Let G be upward closed, and let D be a downset of (G, 
). Then, D = G� for some 
� ∈ Mult(A, B, G) if and only if the intersection of every subfamily of D is either in D or out of G.

Proof. Let I be the intersection of a family of �-closed ideals. If I ∈ G, then I must be �-closed; hence, if 
D = G� and I ∈ G then I ∈ D.

Conversely, suppose the condition holds, and define, for every J ∈ G,

J� :=
⋂

{I ∈ D | J ⊆ I}.

Since G is upward closed, the map J �→ J� goes from G to G and is a closure operation. To show that it is 
multiplicative, let J ∈ G and b ∈ B be such that (J : b) ∈ G. Then,

(J� : b) =

⎛⎜⎝ ⋂
L∈D
J⊆L

L : b

⎞⎟⎠ =
⋂
L∈D
J⊆L

(L : b).

For all these L, we have (J : b) ⊆ (L : b), and thus (L : b) ∈ G; since (L : b) 
 L and D is a downset with 
respect to 
, we have (L : b) ∈ D. Hence, (J : b)� ⊆ (L : b) for every such L, and thus (J : b)� is contained 
in the intersection. Therefore, (J : b)� ⊆ (J� : b), and � is multiplicative. It follows that G� = D. �

To conclude this section, we show how to use Lemma 4.4 and the multiplicative order to describe some 
sets of semiprime operations.

Example 4.11. Let A = B be a discrete valuation ring with uniformizer π. Let G := I(V )• be the set of 
nonzero ideals of A. Both G and I(V ) are upward closed. By Lemma 4.4, we have

(πmA)∗πnA = (πnA : (πnA : πmA)) =
{

(πnA : A) = πnA if m ≥ n,

(πnA : πn−mA) = πmA if m ≤ n.
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In particular, πmA is ∗πnA-closed if and only if m ≤ n, and thus every equivalence class with respect to 

is a singleton (i.e., we can consider [G] = G). Moreover, G is a chain under 
=
(A,A,G):

A ≺ πA ≺ π2A ≺ · · · ≺ πnA ≺ · · · .

The downsets of G are thus G itself (which corresponds to the identity map) and the sets {πnA}↓ =
{A, πA, . . . , πnA}, for n ∈ N (with {πnA}↓ corresponding to the principal operation ∗πnA).

Considering also (0), we see that in (I(V ), 
) the zero ideal is comparable only with A (for which 
A ≺ (0)). If each πnA is closed, then also (0) is closed; hence, the identity map extends only to the 
identity map on I(V ). On the other hand, ∗πnA extends to two different multiplicative operations, namely 
∗πnA ∧ ∗(0) = inf{∗πnA, ∗(0)} and ∗πnA, according to whether (0) is closed or not. In this way, we obtain 
exactly the semiprime operations described in [22].

Note that (G, 
) has no maximal elements, while (I(V ), 
) has a unique maximal element (the zero 
ideal) that is not a maximum. In particular, (A, A, G) and (A, A, I(V )) do not have a canonical ideal.

Example 4.12. Suppose that V is a non-Noetherian one-dimensional valuation domain with valuation v and 
value group Γ ⊆ R; let G := I(V )• and let Δ := Mult(V, V, G).

There are two classes of nonzero ideals:

• P (δ) := {x ∈ V | v(x) ≥ δ}, for δ ∈ R≥0;
• J(δ) := {x ∈ V | v(x) > δ}, for δ ∈ R≥0.

In particular, V = P (0), while J(0) is the maximal ideal of V . If δ ∈ R≥0 \ Γ≥0, then J(δ) = P (δ), while if 
δ ∈ Γ≥0 then J(δ) �= P (δ).

Let P be the set of all P (δ), and let J be the set of the J(δ) with δ ∈ Γ≥0. Then, (P, J ) is a partition 
of G. To study 
=
(A,A,G), we start with studying it on P and J .

By direct calculation, we have

(P (α) :V P (β)) = (P (α) :V J(β)) =
{
V if α < β

P (α− β) if α ≥ β;

doing it again, we see that P (α) 
 P (β) if and only if α ≤ β, and thus (P, 
) is order-isomorphic to R≥0. 
Likewise,

(J(α) :V P (β)) =
{
V if α < β

J(α− β) if α ≥ β

and

(J(α) :V J(β)) =
{
V if α < β

P (α− β) if α ≥ β

so J(α) 
 J(β) if and only if α ≤ β, and (J , 
) is order-isomorphic to Γ≥0. Furthermore, we see that 
P (α) 
 J(β) if and only if α ≤ β, and J(α) 
 P (β) if and only if α < β. In particular, as in the discrete 
case, we can consider [G] = G.

Let now D := G� for some � ∈ Mult(A, A, G): then, D is a downset of G. Thus, D1 := D∩P is a downset 
of P (and is nonempty since V ∈ D1), while D2 := D∩J is either a downset of J or the empty set. Hence, 
they are intervals in the form [0, t) or [0, t]. Set ρ := sup{β | P (β) ∈ D1} and
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γ :=
{

sup{α | J(α) ∈ D2} if D2 �= ∅
−∞ if D2 = ∅.

We analyze separately ρ and γ.
If ρ < ∞, then 

⋂
α∈[0,ρ) P (α) = P (ρ), and thus P (ρ) is �-closed, i.e., P (ρ) ∈ D. Thus, � ≤ ∗P (ρ). On the 

other hand, if ρ = ∞ then � ≤ vP , where vP := inf{∗P (β) | β ∈ R≥0} is the multiplicative operation closing 
exactly all the P (α). (More precisely, vP is the divisorial closure on V .)

If γ = −∞ we have nothing to say. Suppose γ �= −∞, and let d(γ) := inf{∗J(β) | β < γ}. Then, 
� ≤ ∗P (ρ) ∧ d(γ); furthermore, once we know ρ and γ, the only ideal of which we can’t say if it is closed or 
not is J(γ).

If J(γ) /∈ D2, then � = ∗P (ρ) ∧ d(γ). If J(γ) ∈ D2, then � ≤ ∗P (ρ) ∧ d(γ) ∧ ∗J(γ) = ∗P (ρ) ∧ ∗J(γ); in this 
case, moreover, γ /∈ Γ≥0 since otherwise ∗P (ρ) ∧ ∗J(γ) = ∗P (ρ) ∧ ∗P (γ) = ∗P (sup{ρ,γ}) would not close any 
element of J , a contradiction.

Therefore, we have the following four possibilities:

• if ρ < ∞ and γ = −∞ then � = ∗P (ρ);
• if ρ = ∞ and γ = −∞ then � = vP ;
• if ρ < ∞ and J(γ) ∈ D2 then � = ∗P (ρ) ∧ ∗J(γ);
• if ρ = ∞ and J(γ) /∈ D2 (or γ = ∞) then � = ∗P (ρ) ∧ d(γ).

If we now consider the set Δ′ := Mult(V, V, I(V )) of all the semiprime operations, we see that ∗(0) closes 
only (0) and V , and that no other ∗J(α) or ∗P (β) close (0). Hence, if ρ = ∞ or γ = ∞ then � extends 
uniquely to I(V ), while if ρ < ∞ and γ < ∞ we have exactly two extensions, namely � and � ∧ ∗(0).

As in the Noetherian case, (G, 
) has no maximal elements, (I(V ), 
) has a unique maximal element 
(the zero ideal) that is not a maximum, and neither (A, A, G) nor (A, A, I(V )) have a canonical ideal.

5. Functoriality

In this section, we study how multiplicative operations behave under ring homomorphisms. We need the 
following definitions.

Definition 5.1. Let A ⊆ B and A′ ⊆ B′ be two ring extensions, and let φ : B −→ B′ be a ring homomorphism. 
We say that φ is:

• a homomorphism of extensions if φ(A) ⊆ A′;
• an isomorphism of extensions if φ is an isomorphism and φ(A) = A′;
• a quotient of extensions if φ is surjective and φ−1(A′) = A.

Remark 5.2.

(1) If A ⊆ B ⊆ C are ring extensions, then the inclusion φ : B −→ C is a homomorphism between the 
extensions A ⊆ B and A ⊆ C. Furthermore, the identity φ : C −→ C is a homomorphism between the 
extensions A ⊆ C and B ⊆ C.

(2) The fact that φ : B −→ B′ is a homomorphism of extensions can also be expressed by saying that the 
diagram
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A B

A′ B′

φ φ

is commutative. Under this point of view, φ is a quotient if and only if φ is surjective and A is the 
pullback of A′ under φ.

The first step is going from multiplicative operations on (A′, B′, G′) to operations on (A, B, G).

Proposition 5.3. Let A ⊆ B and A′ ⊆ B′ be ring extensions and let φ : B −→ B′ be a homomorphism of 
extensions. Let G′ ⊆ FA′(B′) be upward closed in FA′(B′), and let G := φ−1(G′). Then, the following hold.

(a) For every � ∈ Mult(A′, B′, G′), the map

�φ : G −→ G
I �−→ φ−1((φ(I)A′)�)

is a multiplicative operation on (A, B, G).
(b) If L ⊆ kerφ, then L�φ = (kerφ)�φ = φ−1((0)�).
(c) The map

Ψ: Mult(A′, B′,G′) −→ Mult(A,B,G)

� �−→ �φ

is well-defined and order-preserving.

Proof. We first note that �φ is well-defined since (φ(I)A′)� ∈ G′ and thus its inverse image is in G. It is also 
clear that �φ is extensive and order-preserving. To show that it is idempotent, let I ∈ G. Then,

(I�φ)�φ = φ−1 ((φ(I�φ)A′)�) ;

however,

φ(I�φ)A′ = φ
(
φ−1(φ(I)A′)�

)
A′ = ((φ(I)A′)�)A′ = (φ(I)A′)�

and thus

(I�φ)�φ = φ−1 ((φ(I)A′)�) = I�φ

and �φ is idempotent. Likewise, let I ∈ G and b ∈ B be such that (I : b) ∈ G. Then, φ(I : b) ∈ G′, and since 
G′ is upward closed and φ(I : b) ⊆ (φ(I) : φ(b)) we have (φ(I) : φ(b)) ∈ G′. Hence,

(I : b)�φ = φ−1 ((φ(I : b)A′)�) ⊆
⊆ φ−1 (((φ(I) : φ(b))A′)�) ⊆
⊆ φ−1 ((φ(I)A′ : φ(b))�) ⊆
⊆ φ−1 (((φ(I)A′)� : φ(b))) .

Let t ∈ (I : b)�φ . Then, φ(t) ∈ ((φ(I)A′)� : φ(b)), i.e., φ(t)φ(b) = φ(tb) ∈ (φ(I)A′)�. Therefore,
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tb ∈ φ−1 ((φ(I)A′)�) = I�φ ,

and so t ∈ (I : b)�φ . Thus, (I : b)�φ ⊆ (I�φ : b) and � is multiplicative, as claimed.
The other two points follow directly from the definitions. �

Proposition 5.4. Let A ⊆ B and A′ ⊆ B′ be two ring extensions and let φ : B −→ B′ be a quotient of 
extensions. Let G ⊆ FA(B) be upward closed in FA(B), and let G′ := φ(G). Let also Ψ be the map defined 
in Proposition 5.3. Then, the following hold.

(a) For every � ∈ Mult(A, B, G), the map

�φ : G′ −→ G′

I �−→ φ(φ−1(I)�)

is a multiplicative operation on (A′, B′, G′).
(b) The map

Φ: Mult(A,B,G) −→ Mult(A′, B′,G′)

� �−→ �φ

is well-defined and order-preserving.
(c) Φ ◦ Ψ is the identity on Mult(A′, B′, G′); that is, (�φ)φ = � for every � ∈ Mult(A′, B′, G′).
(d) If kerφ ⊆ L for every L ∈ G, then Ψ ◦ Φ is the identity on Mult(A, B, G); that is, (�φ)φ = � for every 

� ∈ Mult(A, B, G).

Proof. Since φ−1(A′) = A, each φ(I) is an A′-module, and thus �φ is well-defined. It is also clearly extensive 
and order-preserving. To show idempotence, we calculate

(I�
φ

)�
φ

= φ(φ−1(I)�φ) = φ(φ−1(φ(φ−1(I)�))) = φ(φ−1(I)�) = I�
φ

.

To show that �φ is multiplicative, let I ∈ G′ and let b ∈ B′ such that (I : b) ∈ G′. Let b = φ(a) for some 
a ∈ B. Since φ is surjective and G is upward closed, φ−1(I : b) ⊆ (φ−1(I) : a) are both in G. Hence, we have

(I : b)�
φ

= φ(φ−1(I : b)�) ⊆ φ((φ−1(I) : a)�) ⊆ φ(φ−1(I)� : a).

If t = φ(s) ∈ (I : b)�φ , then sa ∈ φ−1(I)�, and thus tb = φ(sa) ∈ I�
φ . Hence, t ∈ (I�φ : b) and so 

(I : b)�φ ⊆ (I�φ : b).
The second point follows directly from the definitions; for (c), let I ∈ G′ and let L := φ−1(I). Then, for 

every � ∈ Mult(A′, B′, G′),

I(�φ)φ = φ(L�φ) = φ(φ−1(φ(L)�)) = φ(L)� = I�.

To show (d), let J ∈ G and L := φ(J). Take � ∈ Mult(A, B, G). Then,

J (�φ)φ = φ−1(L�φ) = φ−1(φ(φ−1(L)�)) = φ−1(L)� = J�,

with the last equality coming from the fact that φ−1(φ(J)) = J as J contains the kernel of φ. The claim is 
proved. �
Corollary 5.5. Let φ : B −→ B′ be a quotient between the extensions A ⊆ B and A′ ⊆ B′. Let G0 := {L ∈
FA(B) | kerφ ⊆ L}. For every G ⊆ G0, we have Mult(A, B, G) � Mult(A′, B′, φ(G)).
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6. Principal ideal domains

Let A ⊆ B be a ring extension. We set

F0(A,B) := {I ∈ FA(B) | IB = B};

note that if C is a further extension of B then this set is also equal to {I ∈ FA(C) | IB = B}. To simplify 
the notation, we set

Mult0(A,B) := Mult(A,B,F0(A,B)).

If D is an integral domain and K its quotient field, F0(D, K) is just the set of nonzero D-submodules of 
K, and thus Mult0(D, K) is the set of semistar operations on D.

If D is an integral domain with quotient field K, an overring of D is a ring contained between D and K; 
if T is an overring of D, we set

Fp(D,T ) := {I ∈ FD(K) | IT = aT for some a ∈ K}.

Theorem 6.1. Let D be an integral domain with quotient field K, let T be an overring of D, and let Δ(T ) :=
{� ∈ Mult(D, K, Fp(D, T )) | T = T �}. Then, the restriction map

ρ : Δ(T ) −→ Mult0(D,T )

� �−→ �|F0(D,T )

is an order isomorphism.

Proof. To simplify the notation, let G := Fp(D, T ) and G0 := F0(D, T ).
Let � ∈ Δ(T ). If I ∈ G0, then I ⊆ T ; since T = T �, we have I ⊆ I� ⊆ T and thus T = IT ⊆ I�T ⊆ T , 

i.e., I�T = T or I� ∈ G0. Hence, ρ(�) is well-defined.
Clearly, ρ(�) is a closure operation; furthermore, it is multiplicative as it is the restriction of a multi-

plicative operation. Thus, ρ is well-defined. Since I� = Iρ(�) for every I ∈ G0, ρ is injective.
We now show that ρ is surjective. Let � ∈ Δ(T ), and define

� : G −→ G,
I �−→ a(a−1I)�

where a is any element of K such that IT = aT . Then, � is well-defined since if IT = a′T then a′ = ua for 
some unit u of T , and

a(a−1I)� = auu−1(a−1I)� = au(u−1a−1I)� = a′(a′ −1I)�.

In particular, � is an extension of �.
The map � is clearly extensive, and (bI)� = bI� for every b ∈ K and every I ∈ G0. Since J ⊆ J� ⊆ T for 

every J ∈ F0(D, T ), we have I�T = IT for every fractional ideal I, and thus

(I�)� = a(a−1I�)� = a(a−1a(a−1I)�)� = a(a−1I)� = I�,

that is, � is idempotent.
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To show that it is order-preserving, let I ⊆ J be two elements of G, and suppose IT = aT , JT = bT . By 
multiplying for b−1, we can suppose without loss of generality that JT = T ; in particular, a ∈ T . We have 
a−1I ∈ G0, and thus

a−1I ⊆ a−1J ∩ T ⊆ a−1J� ∩ T = (J� :T a).

The ideal (J� :T a) is contained between a−1I and T , and thus it is in G0. Since � is multiplicative, it follows 
that (J� :T a) is also �-closed; hence, (I :T a)� ⊆ (J� :T a) ⊆ (J� :T a), that is, a(a−1I)� ⊆ J�. Since 
JT = T , we have J� = J�, and so I� ⊆ J�.

Hence, every � ∈ Mult(D, T, G0) = Mult0(D, T ) can be extended to a multiplicative operation on 
(D, K, G), and thus ρ is surjective. Since ρ is clearly order-preserving, it follows that ρ is an order iso-
morphism. �

The most obvious application of Theorem 6.1 is when T is a principal ideal domain; with two additional 
lemmas, we can say something more.

Lemma 6.2. Let D be an integral domain, and let T be an overring. If J is a D-module such that JT = T , 
then (D : T ) ⊆ J .

Proof. By hypothesis, 1 ∈ JT , and thus we can find j1, . . . , jn ∈ J , t1, . . . , tn ∈ T such that 1 = j1t1 + · · ·+
jntn. If z ∈ (D : T ), then

z = (j1t1 + · · · + jntn)z = j1t1z + · · · + jntnz ∈ j1D + · · · + jnD ⊆ J

since tiz ∈ T (D : T ) ⊆ D for every i. Hence, (D : T ) ⊆ J . �
Lemma 6.3. Let D be an integral domain. There is at most one overring of D that is both a principal ideal 
domain and a fractional ideal of D; furthermore, if it exists then it is the largest overring of D that is also 
a fractional ideal.

Proof. Suppose there are two, say T1 and T2; without loss of generality, T2 � T1. Then, T1T2 is a proper 
overring of T1 which is also a fractional ideal over T1; however, since T1 is a principal ideal domain this is 
impossible. The last claim follows in the same way. �
Theorem 6.4. Let D be an integral domain, and let T be an overring of D that is a principal ideal domain. 
If I := (D : T ) �= (0), then the sets FStar(D), Mult0(D, T ) and Mult0(D/I, T/I) are order-isomorphic.

Proof. Since T is a PID, Fp(D, T ) coincides with the set of fractional ideals of D. Since (D : T ) �= (0), 
T is a fractional ideal of D; by Lemma 6.3, T is the largest overring of D that is a fractional ideal of D. 
Hence, T = T � for every fractional star operation � and so (in the terminology of Theorem 6.1) Δ(T ) =
Mult(D, K, F(D)•). As FStar(D) = Mult(D, K, F(D)•), by Theorem 6.1 we have an isomorphism between 
FStar(D) and Mult0(D, T ).

The map φ : T −→ T/I is a quotient between the extensions D ⊆ T and D/I ⊆ T/I. Each member of 
F0(D, T ) contains kerφ = I (Lemma 6.2); moreover, φ(F0(D, T )) = F0(D/I, T/I). Thus, by Corollary 5.5, 
we have Mult0(D, T ) � Mult0(D/I, T/I). The claim is proved. �
Corollary 6.5. Let D be an integral domain, and let T be an overring of D that is a principal ideal domain. 
If I := (D : T ) �= (0), then there is an isomorphism between Star(D) and {� ∈ Mult0(D/I, T/I) | D/I =
(D/I)�}.
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Proof. The isomorphisms of Theorem 6.4 preserve whether D is closed. �
Corollary 6.6. Let D, D′ be integral domains, and let T, T ′ be principal ideal domains that are overrings of 
D and D′, respectively. If the ring extensions D/(D : T ) ⊆ T/(D : T ) and D′/(D′ : T ′) ⊆ T ′/(D′ : T ′) are 
isomorphic, then Star(D) � Star(D′).

Remark 6.7. In the proof of Theorem 6.1, the restriction map ρ : FStar(D) −→ Mult0(D, T ) can also be 
seen as the composition of two restrictions: the first one, say ρ1, going from FStar(D) = Mult(D, K, F(D)•)
to Mult(D, T, FD(T )•), and the second one going from Mult(D, T, FD(T )•) to Mult(D, T, F0(D, T )) =
Mult0(D, T ). However, while ρ1 is injective, it is not surjective: for example, the map � sending every 
I ∈ FD(T ) to T is a multiplicative operation on (D, T, FD(T )•), as (I� : b) = (T : b) = T for every b ∈ T , 
but it clearly cannot be the restriction of a fractional star operation.

As a less trivial example, let T := K[[X]] and D := K[[X3, X4, X5]] = K + X3K[[X]]; then, (D : T ) =
mD = X3K[[X]]. Let I := D + X2D = K + X2K[[X]], and let J := XD + mD = XK + X3K[[X]]. Then, 
J = XI, and thus if � is a star operation on D then I is �-closed if and only if J is �-closed.

Let G be the set of D-submodules of T contained between mD and T . Consider the multiplicative operation 
� on (D, T, G) generated by D and I: then, J� = (D :T (D :T J)) ∩ (I :T (I :T J)). We have

(D :T J) = X2K[[X]] =⇒ (D :T (D :T J)) = XK[[X]]

and, likewise,

(I :T J) = XK[[X]] =⇒ (I :T (I :T J)) = XK[[X]]

so that J� = XK[[X]] �= J . In the Artinian setting, this means that the restriction map from 
Mult(K, K[[X]]/(X3), FK(K[[X]]/(X3))) to Mult0(K, K[[X]]/(X3)) is not an isomorphism.

The way to obtain Theorem 6.4 from Theorem 6.1 can also be used in a slightly more general setting.

Proposition 6.8. Let D be an integral domain, and let T be an overring of D that is a fractional ideal of D. 
Let I := (D : T ).

(a) If every I /∈ Fp(D, T ) is divisorial over T , then there are isomorphisms between {� ∈ FStar(D) | T =
T �}, Mult0(D, T ) and Mult0(D/I, T/I).

(b) If every I /∈ Fp(D, T ) is divisorial over D, then there are isomorphisms between Star(D), {� ∈
Mult0(D, T ) | D = D�} and {� ∈ Mult0(D/I, T/I) | (D/I) = (D/I)�}

Proof. Let N := F(D) \ Fp(D, T ). By hypothesis, all elements of N are nondivisorial over T (case (a)) or 
over D (case (b)).

(a) As in the proof of Theorem 6.1, we are going to show that the restriction map ρ from Δ(T ) := {� ∈
FStar(D) | T = T �} to Mult0(D, T ) is an isomorphism; the fact that ρ is well-defined and injective follows 
in the same way.

To show that it is surjective, let � ∈ Mult0(D, T ), and define

� : F(D) −→ F(D),

I �−→
{
a(a−1I)� if IT = aT,

I if I ∈ N .
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The restriction of � to Fp(D, T ) is a multiplicative operation on (D, T, Fp(D, T )); it is clear that � itself is 
extensive and idempotent.

To show that it is order-preserving, let I ⊆ J . If I ∈ N or if both I, J ∈ Fp(D, T ) then clearly I� ⊆ J�. 
Suppose I ∈ Fp(D, T ) and J ∈ N ; without loss of generality, IT = T . Then,

I� = I� ⊆ (T :T (T :T I)) = (T :T (T :T IT )) = T = IT.

However, as J ∈ N , by hypothesis J is divisorial over T , and thus in particular it is a T -ideal; hence, 
I� = IT ⊆ JT = T = J�, and so � is order-preserving. The fact that � is multiplicative follows immediately 
by the multiplicativity of � on Fp(D, T ) and by the fact that (I : b) = b−1I ∈ N if and only if I ∈ N .

Therefore, ρ is surjective and thus an isomorphism, as claimed. The claim about the quotient follows as 
in the proof of Theorem 6.4.

(b) is proved similarly: ρ is well-defined and injective, � is defined in the same way and the only problem 
is showing that � is order-preserving, with the only non-trivial case being when I ∈ Fp(D, T ) and J ∈ N . 
Suppose we are in this case, and without loss of generality suppose IT = T . Then, I� = I� ⊆ (D :T (D :T I)); 
since IT = T , we have

(D :K I) ⊆ (D :K I)T ⊆ (T :K IT ) = T,

and so (D :K I) = (D :T I). Therefore,

(D :T (D :T I)) = (D :T (D :K I)) ⊆ (D :K (D :K I)) = Iv.

However, as J ∈ N , we have J = Jv ⊇ Iv; thus, I� ⊆ J = J�, and so � is order-preserving. The fact 
that � is multiplicative follows immediately by the multiplicativity of � on Fp(D, T ) and by the fact that 
(I : b) = b−1I ∈ N if and only if I ∈ N . Thus, ρ is an isomorphism, as claimed. The part about the quotient 
follows as in the proof of Theorem 6.4. �

Theorem 6.4 and Proposition 6.8 can be seen as generalizations of some already known results.
Recall that a conductive domain is an integral domain D such that (D : T ) �= (0) for all overrings T of 

D different from the quotient field of D. If D is conductive and seminormal, then by [2, Proposition 2.12(i)]
D is the pullback of the diagram

A

V K,
φ

where V is a valuation overring of D and K is the residue field of V .
The “in particular” statement of the following proposition is part of [13, Theorem 2.5].

Proposition 6.9. Let D, V, K, A be as above. Then, there is an isomorphism between Star(D) and {� ∈
Mult0(A, K) | D = D�}. In particular, if K is the quotient field of A then there is an isomorphism between 
Star(D) and {� ∈ SStar(A) | A = A�}.

Proof. Let v be the valuation relative to V . Take an I ∈ F(D) \ Fp(D, V ): we claim that I =
⋂
{aD | I ⊆

aD}. Since IV is not principal, v(I) has no infimum in the value group of V . Let x be in the intersection, 
and suppose there is an i ∈ I such that v(i) ≤ v(x). Then, there is a j ∈ I such that v(j) < v(x), and thus 
v(xj−1) > 0, i.e., xj−1 belongs to the maximal ideal of V , which by construction is (D : V ). Therefore, 
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x ∈ j(D : V ) ⊆ jD ⊆ I. Thus, I is equal to the intersection and so it is D-divisorial. The claim now follows 
from Proposition 6.8(b).

The “in particular” statement follows since if K is the quotient field of A then SStar(A) =
Mult0(A, K). �

Recall that a domain D is a pseudo-valuation domain (PVD) if there is a valuation overring V of D such 
that (D : V ) is the maximal ideal of V ; in this case, V is called the valuation overring associated to D [9]. 
If D is a PVD, F is the residue field of D and L the residue field of V , the multiplicative operations on 
(F, L, F0(F, L)) closing F are exactly what in [19, Section 3] were called “F -star operations on L” (since 
F0(F, L) = FF (L)•). Under this terminology, the following corollary is a different form of [19, Theorem 3.1].

Corollary 6.10. Let D be a pseudo-valuation domain with associated valuation overring V , and let F and 
L be their respective residue field. Then, Star(D) is isomorphic to the set of the � ∈ Mult0(F, L) such that 
F = F �.

Proof. A pseudo-valuation domain is seminormal and conductive, and thus we can apply Proposition 6.9. �
Another consequence is the case of Prüfer domains, which was treated in [13, Theorem 2.5].

Corollary 6.11. Let D be a Prüfer domain that is not a valuation domain, and let P ⊆ Jac(D) be a nonzero 
prime ideal. Then, there is an isomorphism between Star(D) and (S)Star(D/P ), where (S)Star(D/P ) is the 
set of semistar operations on D/P closing D/P .

The case of fractional star operations is slightly more delicate (since P and DP may not be closed by 
every such closure), but can be treated similarly. See [21, Proposition 2.2] for a description.

7. Artinian extensions

In this section, we study the consequences of the previous results on one-dimensional Noetherian domains. 
In view of [12, Theorem 2.3] and [18, Theorem 5.4], it is not restrictive to consider only local domains.

Suppose thus that D is a local one-dimensional Noetherian domain, and suppose furthermore that its 
integral closure T is finite over D (i.e., D is analytically unramified). Then, T is a principal ideal domain and 
(D : T ) �= (0): by Corollary 6.6 the sets Star(D) and FStar(D) depend only on the extension D/(D : T ) ⊆
T/(D : T ), which is an extension A ⊆ B of Artinian rings, with A := D/(D : T ) local and B := T/(D : T ) a 
principal ideal ring. In particular, B can be written as a product B1×· · ·×Bt, where each Bi is an Artinian 
local ring that is also an A-algebra and a principal ideal ring.

Example 7.1. Suppose A = k is a field; this corresponds to the case where (D : T ) is the maximal ideal mD

of D. Then, each Bi is a k-algebra; furthermore, by [14, Theorem 8], Bi is isomorphic to Li[[X]]/(Xei) �
Li[X]/(Xei), where Li is the residue field of Bi and ei ≥ 1 is a natural number. In particular, setting 
fi := [Li : k], we have

�D(D/(D : T )) = �A(B) =
t∑

i=1
eifi,

and thus, if n := �A(B) is fixed, there are at most a finite number of choices for ei and fi. Moreover, if k
is finite, then fi uniquely determines Li; hence, there are only finitely many possibilities for B, and thus 
finitely many possibilities for Star(D) and FStar(D) � Mult0(k, B).

For example, if n = 3, we have only five possible cases:
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• t = 1:
– e = 1, f = 3;
– e = 3, f = 1;

• t = 2:
– e1 = 1, f1 = 2; e2 = f2 = 1;
– e1 = 2, f1 = 1; e2 = f2 = 1;

• t = 3:
– ei = fi = 1 for i ∈ {1, 2, 3}.

Those cases correspond exactly to the five cases of [12, Theorem 3.1]: more precisely, they correspond, 
respectively, to points (3), (4), (5), (6) and (2) of the theorem. In particular, our method gives a “high-
level” justification for the fact that the study of star operations splits into these cases.

The case (D : T ) = mD will be studied in more detail in [20].
Example 7.1 can be generalized. If n, q < ∞, we denote by C(n, q) the set of domains D such that:

• D is one-dimensional, local and Noetherian;
• the residue field of D has cardinality q;
• the integral closure T of D is finite over D and �D(T/(D : T )) = n.

Proposition 7.2. Fix n, q < ∞. Then, there are only finitely many possibilities for Star(D) and FStar(D), 
as D ranges in C(n, q).

Proof. Take any D ∈ C(n, q) and let A := D/(D : T ) and B := T/(D : T ). By Theorem 6.4 and Corol-
lary 6.6, the sets Star(D) and FStar(D) depend only on A ⊆ B; hence, it is enough to show that there are 
only finitely many possibilities for the extension A ⊆ B.

Since �A(B) = �D(T/(D : T )), we have �A(A) ≤ n: hence, �A(A) ≤ n and thus |A| ≤ qn, so that there are 
only finitely many possible structures for A. Likewise, �A(B) = �A(A) + �A(B/A) ≤ 2n, and thus |B| ≤ q2n; 
hence, there are only finitely many possible extensions A ⊆ B. The claim is proved. �

We can interpret Proposition 7.2 by saying that, once n and q are fixed, we can find a finite family 
of integral domains that “represents” all one-dimensional local domains with |D/mD| = q and �D(T/(D :
T )) = n, in the sense that for any such domain D the sets Star(D) and FStar(D) are isomorphic to Star(T )
and FStar(T ) for some member T of the family. We now want to show that, under some hypothesis, these 
members can be taken to be close to a polynomial ring.

Lemma 7.3. Let k be a field and let L1, . . . , Lt be finite algebraic extensions of k (not necessarily distinct). 
Then, the following hold.

(a) There are an integer m and a principal ideal domain T that is an overring of k[X1, . . . , Xm] such that 
T has t maximal ideals, and the residue fields of T are exactly L1, . . . , Lt.

(b) If each Li is a simple extension of k, then T can be taken to be a localization of k[X1, . . . , Xm].
(c) If each Li is a simple extension of k and k is infinite, we can take m = 1.

Proof. (a) Let N1, . . . , Nt be prime ideals of k[X] with residue field k, and let T1 := S−1k[X] with S :=
k[X] \

⋃
i Ni. Using repeatedly the construction in [11, Section 2], we can construct domains T1 ⊆ T2 ⊆ · · · , 

such that, for i > 1, Ti is a principal ideal overring of Ti−1[Xi] (and so of k[X1, . . . , Xi]) and such that 
one of the following holds: if the residue fields of Ti−1 are F1, . . . , Fr, then the residue fields of Ti are 
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either F1, . . . , Fr, Fi (for some 1 ≤ i ≤ r) or F1, . . . , F ′
i , . . . , Fr, with F ′

i being a simple extension of Fi. In 
particular, after finitely many steps the residue fields will be L1, . . . , Ln, as claimed.

(b) For each i, let pi(X) ∈ k[X] be a polynomial whose splitting field is Li; then, the requested T will 
be S−1k[X1, . . . , Xt], where S is the multiplicatively closed set k[X] \

⋃
i(pi(Xi)).

(c) For a given L ∈ {L1, . . . , Lt}, there are infinitely many irreducible monic polynomials in k[X] whose 
splitting field is L: since L is simple there will be one, say p(X), and the others will be those in the form 
p(X + s) for s ∈ k (since p(X + s) = p(X + s′) can happen only finitely many times for each s). Hence, 
for every L there are infinitely many maximal ideals of k[X] with residue field L. In particular, we can take 
distinct maximal ideals M1, . . . , Mn of k[X] such that k[X]/Mi � Li; the requested T will be S−1k[X], 
where S := k[X] \

⋃
i Mi. �

Remark 7.4. The integer m obtained in the proof of Lemma 7.3 is not tight: for example, it is possible than 
k[X] has already L1, . . . , Lt as residue fields even if k is finite (e.g., if each Li appears only once, or more 
generally if it does not appear too many times). If each Li is actually k, an application of the methods of 
[11, Section 2] gives an upper bound m ≤ 1 + log|k| t (or m = 1 if k is infinite, as in part (c) of the lemma).

Proposition 7.5. Let D be a one-dimensional local Noetherian domain with residue field k of characteristic 
p; let T be the integral closure of D and let n := |Max(T )|. Suppose that (D : T ) �= (0) and that p ∈ (D : T ). 
Then, the following hold.

(a) If k is perfect and infinite, then there are a localization T ′ of k[X] and a one-dimensional local Noetherian 
domain R ⊆ T ′, with integral closure T ′, such that Star(D) � Star(R).

(b) There are an integer m, a principal ideal overring T ′ of k[X1, . . . , Xm] and a one-dimensional local 
Noetherian domain R ⊆ T ′, with integral closure T ′, such that Star(D) � Star(R).

(c) If T is local with residue field L, there is an integral domain R ⊆ L[[X]], with integral closure L[[X]], 
such that Star(D) � Star(R).

Proof. Since p ∈ (D : T ), the quotient D/(D : T ) is a k-algebra, and thus so is B := T/(D : T ); let 
B = B1 × · · · × Bn. Then, also all the Bi are k-algebras. By [14, Theorem 8], each Bi is isomorphic to 
Li[[X]]/(Xei) � Li[X]/(Xei), where Li is the residue field of Bi and the ei ≥ 1 are integers. Furthermore, 
if B is local then n = 1 and so B � L[[X]]/(Xe). Moreover, each Li is finite over k since T is finite over D.

By Lemma 7.3, we can find a principal ideal domain T ′ with residue fields L1, . . . , Ln which is an overring 
of k[X] (if k is infinite and perfect) or of some k[X1, . . . , Xm]. Let M1, . . . , Mn be the maximal ideals of T ′, 
and let I := Me1

1 · · ·Men
n : then, T ′/I � B. Consider the pullback

R T ′

A B.

π π

Since A is local, also R is local; furthermore, since T ′ is a domain then R too is a domain with the same 
quotient field of T ′ [6, Corollary 1.5(7)]. Moreover, since B is finite over A then T ′ is finite over R [6, 
Corollary 1.5(4)], and since A and B are Noetherian then R is Noetherian too [6, Proposition 1.8]. To 
summarize, R is a one-dimensional local Noetherian domain with integral closure T . By Theorem 6.4, 
FStar(R) � Mult0(A, B) � FStar(D), and likewise Star(R) � Star(D). The claim is proved. �

In the local case, this result allows to calculate Star(D) through a fairly explicit domain D, with the 
advantage of working on integral domains (instead of rings with zero-divisors). For example, if the integral 
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closure T of D is local and (D : T ) = mD, then we can calculate Star(D) by considering instead the ring 
F + XnL[[X]], for some n and some field extension F ⊆ L.

References

[1] D.D. Anderson, Sylvia J. Cook, Two star-operations and their induced lattices, Commun. Algebra 28 (5) (2000) 2461–2475.
[2] David E. Dobbs, Richard Fedder, Conducive integral domains, J. Algebra 86 (2) (1984) 494–510.
[3] Jesse Elliott, Rings, Modules, and Closure Operations, Springer Monographs in Mathematics, Springer, 2019.
[4] Neil Epstein, A guide to closure operations in commutative algebra, in: Progress in Commutative Algebra 2, Walter de 

Gruyter, Berlin, 2012, pp. 1–37.
[5] Neil Epstein, Semistar operations and standard closure operations, Commun. Algebra 43 (1) (2015) 325–336.
[6] Marco Fontana, Topologically defined classes of commutative rings, Ann. Mat. Pura Appl. 4 (123) (1980) 331–355.
[7] Marco Fontana, Mi Hee Park, Star operations and pullbacks, J. Algebra 274 (1) (2004) 387–421.
[8] Robert Gilmer, Multiplicative Ideal Theory, Pure and Applied Mathematics, vol. 12, Marcel Dekker Inc., New York, 1972.
[9] John R. Hedstrom, Evan G. Houston, Pseudo-valuation domains, Pac. J. Math. 75 (1) (1978) 137–147.

[10] William J. Heinzer, James A. Huckaba, Ira J. Papick, m-canonical ideals in integral domains, Commun. Algebra 26 (9) 
(1998) 3021–3043.

[11] Raymond C. Heitmann, PID’s with specified residue fields, Duke Math. J. 41 (1974) 565–582.
[12] Evan G. Houston, Abdeslam Mimouni, Mi Hee Park, Noetherian domains which admit only finitely many star operations, 

J. Algebra 366 (2012) 78–93.
[13] Evan G. Houston, Abdeslam Mimouni, Mi Hee Park, Integrally closed domains with only finitely many star operations, 

Commun. Algebra 42 (12) (2014) 5264–5286.
[14] Thomas W. Hungerford, On the structure of principal ideal rings, Pac. J. Math. 25 (1968) 543–547.
[15] Manfred Knebusch, Tobias Kaiser, Manis Valuations and Prüfer Extensions. II, Lecture Notes in Mathematics, vol. 2103, 

Springer, Cham, 2014.
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